Surface Displacement Vector FieldΒΆ
See reference Helicoid transformation in Wikipedia.
import numpy as np
from matplotlib import pyplot as plt
import s3dlib.surface as s3d
import s3dlib.cmap_utilities as cmu
#.. Surface Displacement Vector Field
# 1. Define function to examine .....................................
def catenoid_helicoid(rtz, A) :
r,t,z = rtz
A = A*np.pi # -1 < A < 1
cosA, sinA = np.cos(A), np.sin(A)
U, V = t, z
x = cosA * np.sinh(V) * np.sin(U) + sinA * np.cosh(V) * np.cos(U)
y = -cosA * np.sinh(V) * np.cos(U) + sinA * np.cosh(V) * np.sin(U)
Z = ( U/np.pi- 1.0 ) *cosA + V * sinA
return x,y,Z
# 2. Setup and map surfaces .........................................
rez = 5
cmu.rgb_cmap_gradient([0.25,0.15,0],[1,.9,.75],'cardboard')
card_trans = cmu.alpha_cmap( 'cardboard', 0.05 )
surface = s3d.CylindricalSurface(rez, basetype='squ_s')
surface.map_geom_from_op( lambda rtz : catenoid_helicoid(rtz,.5), returnxyz=True )
surface.map_cmap_from_op( lambda rtz : rtz[0], card_trans)
low_rez = s3d.CylindricalSurface(2, basetype='squ_s')
low_rez.map_geom_from_op( lambda rtz : catenoid_helicoid(rtz,.5), returnxyz=True )
vf = low_rez.dispfield_from_op(lambda rtz : catenoid_helicoid(rtz,0.6), returnxyz=True, scale=1 )
# 3. Construct figures, add surface, plot ...........................
fig = plt.figure(figsize=plt.figaspect(1))
fig.text(0.975,0.975,str(vf), ha='right', va='top', fontsize='smaller', multialignment='right')
ax = plt.axes(projection='3d', aspect='equal')
minmax = (-1.2,1.2)
ax.set(xlim=minmax, ylim=minmax, zlim=minmax )
ax.view_init(25, -28)
ax.add_collection3d(surface)
ax.add_collection3d(vf)
fig.tight_layout()
plt.show()